Roller Coasters Essay

Words: 7005
Pages: 29

Roller Coaster

For many people, there is only one reason to go to an amusement park: the roller coaster. Some people call it the "scream machine," with good reason. The history of this ride reflects a constant search for greater and more death-defying thrills.

How does a roller coaster work?
What you may not realize as you're cruising down the track at 60 miles an hour is that the coaster has no engine. The car is pulled to the top of the first hill at the beginning of the ride, but after that the coaster must complete the ride on its own. You aren't being propelled around the track by a motor or pulled by a hitch. The conversion of potential energy to kinetic energy is what drives the roller coaster, and all of the kinetic

Tubular steel coasters allow more looping, higher and steeper hills, greater drops and rolls, and faster speeds.

CAROSOAL Carousel

Carousels are not considered "thrill machines" by any stretch of the imagination. Still, carousels are as reliant on the laws of motion as their more exciting cousins, the roller coasters. It's theoretically possible that, allowed to spin out of control, a carousel could gain enough speed so that the riders would be thrown off. Thankfully, runaway carousels are not the least bit common.

Are some horses moving faster than others?
With all of its beauty and seeming simplicity, the carousel is a delicate balance of motion and forces. All of the horses move through one complete circle in the same amount of time. The horses on the outside of the carousel have to cover more distance than the inside horses in the same amount of time. This means the horses on the outside have a faster linear speed than those at the hub.

What if they're galloping?
On some carousels, the horses go up and down in a galloping motion simulating what it might be like to ride a real horse. For these carousels, the ride designer had to approach the problem of movement around the central axis differently. In a normal carousel, each horse maintains a constant acceleration, radius, and tangential speed (speed tangent to the circular path of the carousel). If you add a