Problem 3.2
√
√
√
√
a) FY (y) = Φ( y) − Φ(− y). By symmetry, the density satisfies φ(− y) = φ( y). Therefore, taking the derivative
1
1
√
√
√ φ( y) + √ φ(− y)
2 y
2 y
1
√
√ φ( y) y 1 − 1 −(√y)2 y 2e
2π
y
1
1 y 2 −1 e− 2 .
1
1
2 2 Γ( 2 )
fY (y) =
=
=
=
This is the density of the χ2 (1) distribution.
b) We can assume that X ∼ N (0, 1) since the kurtosis for µ + σX is the same. From the above, Y = X 2 ∼ G( 1 , 1 ) so
2 2
E[X 4 ] = E[Y 2 ] =